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Abstract

We develop a novel methodology for data-driven simulation of coupled multi-physics systems. The
result of the method is a learned numerical integrator of the coupled system dynamics. In order to
preserve the fundamental physics of the coupled systems, and thus preserve the geometrical properties
of the governing equations—even if they may be completely unknown—we impose a port-metriplectic
structure on the system evolution, i.e., a combination of a symplectic evolution for the system energy
with a gradient flow for the entropy of each system, which can be exchanged through predefined ports.
The resulting method guarantees by construction the satisfaction of the laws of thermodynamics for
open systems, leading to accurate predictions of the future states of their dynamics. Examples are
given for systems of varying complexity, based on synthetic as well as experimental data.

Keywords: GENERIC, port-metriplectic, scientific machine learning, coupled problems, structure-preserving
formulations, regression

1 Introduction

The analysis of complex physical systems from
experimental data is a highly topical subject with
countless practical applications. Among them, we
cite the development of digital twins [1, 2] or struc-
tural health monitoring [3], to name but a few.
Machine learning techniques developed in recent
years shed light on the behavior of these systems,
particularly when there is no detailed knowledge
of the physical laws governing their behavior.

Although great advances have been made in
the development of these techniques, there are

still certain difficulties that have prevented their
widespread use in industry. These include those
related to the accuracy and stability of the predic-
tions made, which are often sensitive to variations
in the input data.

This has led to interest in the development
of techniques that can ensure a certain degree of
accuracy, as well as compliance with known phys-
ical laws. If these are fully known, in the form
of PDEs, the most widespread technique is the
use of physics-informed neural networks, PINNs
[4]. However, there is often a discrepancy between
the predictions made by these physical laws and
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the actual behavior of the system under analy-
sis [5]. On other occasions, these equations are
not known and these types of techniques can
help to determine the physical laws governing the
phenomenon, giving rise to explainable artificial
intelligence techniques [6]. At other times, solu-
tions are restricted to those that comply with more
general physical principles, or of a higher epis-
temic level. Thus, inductive biases are developed
to ensure (within the range of accuracy of the tech-
nique) compliance with general physical laws such
as conservation [7–12], etc.

In general, physics-based machine learning
aims to incorporate physical knowledge into
purely data-driven strategies. The goal is to devise
methods capable of learning the dynamics of
physical systems from data and making accurate
predictions about states not explicitly included in
the training data. In the framework of physics-
informed methods, prior knowledge about the sys-
tem is taken into account to improve the accuracy
and interpretability of the results. Of particu-
lar interest are the so-called structure-preserving
methods [13, 14]. In computational mechanics,
geometric numerical integration refers to methods
that respect the physics of a particular problem,
in particular its geometric characteristics [15, 16].

In particular, we are interested in learning
strategies that do not take into account the exact
equations that model the problem at hand, simply
because it is assumed that they are not known. We
focus on general formulations that only impose the
fulfillment of universal physical laws, such as the
laws of thermodynamics [17–20]. Thus, the data
serve to reveal the particular formulation of the
problem under experimental conditions. Then, for
new, unseen situations, the structure is predicted
by appropriate interpolation.

For closed isolated systems, the General
Equation for the Non-Equilibrium Reversible-
Irreversible Coupling, GENERIC, formulation [21,
22] defines a general structure for the evolution
of the system, while ensuring the first and second
laws of thermodynamics are satisfied. Numerical
learning strategies based on the GENERIC for-
malism have successfully been developed in previ-
ous works, while numerical integrators with guar-
anteed stability properties also exist [23]. In them,
prediction is performed by appropriate interpola-
tion on the manifold of solutions [17, 24, 25] or

by training neural networks [26–28]. Alternative
formalisms with thermodynamical considerations,
such as the generalized Onsager formalism [29, 30],
also offer a general structure for the evolution of
reversible and irreversible processes [12, 31, 32].

Recently, a machine learning strategy for inter-
acting, dissipative open systems was proposed
by Hernández et al [33]. It employs, during the
training period, an inductive bias that generalizes
port-Hamiltonian structures [34–36] to dissipative
systems. This strategy essentially develops a port-
Hamiltonian formulation, in which GENERIC is
extended to open systems that communicate and
exchange energy through ports.

In this paper, we present a learning strat-
egy which applies piece-wise linear regression to
the terms in the port-metriplectic formulation
in [33] for interacting open systems governed by
different physics. The resulting method ensures
the fulfillment of the principles of thermodynam-
ics (conservation of energy at a global scale,
but exchange among sub-systems; non-negative
entropy production) for the predicted states of the
coupled system. The strategy is specially suitable
in cases with a low amount of available data. The
robustness of the method is tested for pseudo-
experimental (synthetic) and experimental data.

The remainder of the paper is structured as
follows. First, we briefly overview the generalized
Onsager and GENERIC formalisms modeling the
dynamics of closed systems in Section 2, and the
port-metriplectic formulation for open systems in
Section 3. Section 4 is devoted to the description of
the proposed learning algorithm for the dynamics
of open systems. In Section 5, we assess the perfor-
mance of the strategy for three different examples.
The discussion in Section 6 closes the paper.

2 Dynamics of closed systems

The state of a closed (isolated) system at time t is
assumed to be fully described by the value of a set
of variables z = z(t). We can learn the evolution
of the system by identifying the structure of the
dynamical problem

ż =
dz

dt
= f(z, t), z(0) = z0, (1)

where function f is unknown in general [37, 38].
In the data-driven approach, the closed form of
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f is not sought. Instead, we look for an approx-
imation of f that enables a robust and efficient
integration in time with sufficient accuracy. Given
some observations for the evolution of z at discrete
time instants, function f is readily approximated
by applying regression techniques, such as classi-
cal linear regression [17, 25, 39], support vector
machines [40] or neural networks [26, 33], among
others. This classical approach to the problem
presents, however, severe limitations. Very often,
small perturbations in the input data produces
large, physically meaningless outputs.

To void these issues, in the last years we
have seen a growing interest in the development
of physics-based, structure-preserving and related
techniques. One particularly appealing approach
to this problem assumes a particular form of f ,
depending on known properties of the system at
hand. For instance, if the system is conservative,
the Hamiltonian formalism allows us to assume
that f takes the form

ż =
dz

dt
= L

∂H
∂z

= L
∂E

∂z
, (2)

where the HamiltonianH is the total energy of the
system, E, and L is the Poisson, skew-symmetric
matrix. The problem is then reduced to determine
the precise forms of L and E applying regres-
sion to data. While this type of techniques have
attracted a lot of interest, purely conservative
(reversible) systems are scarce in nature, where
the norm is the presence of dissipation.

In what follows we briefly review two alterna-
tive formulations for the time evolution of closed
systems under reversible and irreversible condi-
tions: the generalized Onsager principle, which is
a single-generator formalism, and the GENERIC
framework, which is a double-generator formalism.
These two approaches incorporate dissipative phe-
nomena into the Hamiltonian formulation (2) and
lead to equivalent dynamics. See [32, 41, 42] for a
detailed discussion in the relation between single
and double operator formalisms.

2.1 Generalized Onsager formalism

The generalized Onsager formalism [29–31] is a
thermodynamically consistent formulation for the
evolution of a non-equilibrium system. This is a
single-generator formulation, which means that
both the reversible and dissipative contributions

to the evolution use the same generator, F . The
generator F is a potential function with a ther-
modynamic interpretation such as free energy
or negated entropy. The evolution of z is then
modeled as

ż = − (L(z) +M(z))
∂F
∂z

, (3)

where L is a skew-symmetric matrix and M is
symmetric and positive semi-definite. Matrix L
models the conservative part of the system, while
M models the dissipative contribution.

2.2 GENERIC formalism

The General Equation for Non-Equilibrium
Reversible-Irreversible Coupling (GENERIC) for-
malism [21, 22] offers a general description for
the evolution of a system based on two operators,
accounting for conservative and dissipative phe-
nomena, respectively. Within this approach, the
free energy is assumed to take the form F = E+S.
With this additive decomposition, we have

ż = L(z)
∂E

∂z
+M(z)

∂S

∂z
, (4)

with L the Poisson skew-symetric matrix, mod-
eling the conservative part of the evolution, and
M a symmetric and semi-positive definite matrix,
responsible for the dissipation of the system. E
stands for the energy of the system and S, for
its entropy. For Equation (4) to hold, it is neces-
sary that the so-called degeneracy conditions hold,
namely,

L(z)
∂S

∂z
= 0, (5)

and

M(z)
∂E

∂z
= 0. (6)

These conditions ensure the fulfillment of the first
and second laws of thermodynamics, this is, con-
servation of energy and non-decrease of entropy.
From (5) and (6), it is straightforward to prove
that

Ė =
∂E

∂z
ż = 0, (7)

given the skew-symmetry of L, and

Ṡ =
∂S

∂z
ż =

∂S

∂z
M(z)

∂S

∂z
≥ 0, (8)
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given the positive semi-definiteness of M . Thus,
a regression of (1) based on the GENERIC for-
mulation guarantees satisfying the laws of ther-
modynamics by construction. This approach is
often referred to as metriplectic, since it combines
a symplectic contribution to enforce energy con-
servation and a metric one to enforce entropy
production [43, 44].

3 Port-metriplectic formalism
for open systems

The formalisms in Section 2 can be extended to
describe the dynamics of open systems, in which
the evolution of the state variables z is affected
by external forces. In this framework, we use the
term bulk contribution to refer to the conservative
and dissipative phenomena that are inherent to
the system, and the term port contribution to refer
to the external forces.

In this section, we review the port-Hamiltonian
extension of the GENERIC formulation to inter-
acting and open systems proposed by Hernández
et al [33], called port-metriplectic formalism. The
extension of the generalized Onsager formalism to
open systems is analogous [31].

The port-metriplectic formulation for the evo-
lution of state variables z reads

ż = L(z)
∂E

∂z
+M(z)

∂S

∂z︸ ︷︷ ︸
bulk contribution

+ F︸︷︷︸
port contribution

, (9)

where we use a GENERIC description of the
bulk dynamics and F accounts for the presence
of an external force. In this case, satisfying the
degeneracy conditions is not required: conserva-
tion of energy and increase of entropy cannot be
guaranteed due to the presence of an external
port.

In the work by Hernández et al [33], the port
contribution F is also decomposed following the
GENERIC structure. That is,

F = L̃
∂Ẽ

∂z
+ M̃

∂S̃

∂z
, (10)

with L̃ skew-symmetric and M̃ symmetric and
positive semi-definite. Ẽ and S̃ stand for the con-
tributions to the energy and entropy of the system
which are due to the external force, respectively.

Alternatively, we can follow the one-single
operator formalism (3) to decompose F ,

F = −
(
L̃+ M̃

) dF̃
dz

, (11)

with L̃ skew-symmetric, M̃ symmetric and posi-
tive semi-definite and F̃ the port addition to the
bulk free energy F . The two descriptions of the
port contribution F lead to the same dynamics.

4 Learning algorithm

For a parametric open system, we denote by
D = {z(tn;µj); n = 1, . . . , nT , j = 1, . . . , np} the
dataset with observations of its state variables z
at discrete time instants t1, . . . , tnT

, for a rep-
resentative parametric sampling, µ1, . . . , µnp

. In
this section, we present a strategy to approximate
z(tn;µ

⋆), n = 1, . . . , nT , for a parameter µ⋆ which
is not included in the original sampling. The strat-
egy is based on interpolating the terms in the
port-metriplectic formulation (9) of the problem.

We distinguish two phases in the process:
identification and interpolation. The identification
phase consists in the computation of all the ele-
ments in (9) (matrices and gradients), at every
time step and for all the sampled parameters in
the data set. Then, in the interpolation phase,
the precomputed elements are properly combined
to approximate the port-metriplectic structure for
the new parameter µ⋆. The details of each phase
are discussed next.

4.1 Identification (offline
computation)

The first step is computing the value of the
matrices and gradients appearing in the port-
metriplectic structure (9) of the problem for the
parameters µj , j = 1, . . . , np, in the data set D.
Note that this is an offline computation, to be
performed once at the beginning of the process.

At time step n, the discretization of Eq. (9)
leads to

zn+1 − zn

∆t
= LnDEn +MnDSn + Fn, (12)

where we use the forward Euler approximation of
the derivative. Although more accurate integra-
tion schemes can be employed to minimize the
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loss of accuracy during the integration, the study
of the effects of these schemes in the resulting
prediction is not the objective of this work. For
a detailed analysis on the topic, the interested
reader is referred to [23].

Assuming that the energy and the entropy
depend quadratically on the state variables, we
approximate

DEn = Anzn, DSn = Bnzn, (13)

where An and Bn are assumed to be diagonal
matrices. Of course, more general assumptions can
be made, as in [17], but for the examples to fol-
low, this mild simplification has rendered excellent
results.

In the following, we take a GENERIC decom-
position of the port term Fn as in (10), that is, we
express

Fn = L̃nÃnzn + M̃nB̃nzn, (14)

with Ãn and B̃n diagonal matrices. The formula-
tion for the single-generator decomposition of the
port (11) is analogous.

The discrete values of the terms in the equation
are computed by solving the minimization prob-
lem

{Ln,Mn,An,Bn, L̃n, M̃n, Ãn, B̃n} =

arg min
L,M,A,B,L̃,M̃,Ã,B̃

∥∥∥zn+1 − zn

∆t
− LAzn−

MBzn − L̃Ãzn − M̃B̃zn

∥∥∥,
(15)

where we have omitted the dependence on µj to
simplify the notation. Very often, the Poissson
and dissipation matrices have a known structure
that can be fixed beforehand, and only the gradi-
ents (or equivalently, matrices A and B) remain as
unknowns.

4.2 Staggered approach

In cases in which data of the equivalent closed sys-
tem (with no external force acting) are available,
the minimization problem in (15) can be solved by
means of a staggered approach, in order to facili-
tate its convergence. In particular, the GENERIC
formulation (4) of the closed system is used
to determine the bulk contribution of the port-
metriplectic open-system formulation. Let C =
{zc(tn;µj); n = 1, . . . , nT , j = 1, . . . , np} denote

the dataset containing the observations for the
closed system. In the staggered approach, we take
the next two steps:

1. Computation of the terms from the bulk con-
tribution, using the closed-system data in C.
The evolution of the closed system is captured
by the GENERIC formulation (4) of the prob-
lem. The time discretization of (4) leads to the
constrained minimization problem

{Ln,Mn,An,Bn}

= arg min
L,M,A,B

∥∥∥∥zc
n+1 − zc

n

∆t
− LAzc

n −MBzc
n

∥∥∥∥ ,
(16)

subject to

LBzc
n = 0,

MAzc
n = 0.

2. Computation of the port contribution, using
the open-system data in D. The discrete terms
in the bulk contribution are replaced by the
values obtained in (16). Thus, the remaining
terms in Fn+1 are obtained by solving

{L̃n, M̃n, Ãn, B̃n} =

arg min
L̃,M̃,Ã,B̃

∥∥∥zn+1 − zn

∆t
− LnAnzn−

MnBnzn − L̃Ãzn − M̃B̃zn

∥∥∥.
(17)

Note that we are extrapolating the bulk open-
system gradients DEn and DSn from the closed-
system gradients, by using the matrices An and
Bn that are obtained from the data in C.

4.3 Interpolation (online
computation)

For a new parameter µ⋆, we approximate the time
evolution of the corresponding state variables,
z(tn;µ

⋆), using the discrete port-metriplectic for-
mulation (12). That is, given the initial state
variables z1,

zn+1 = zn+

∆t
(
L⋆nA

⋆
nzn +M⋆

nB
⋆
nzn + L̃⋆nÃ

⋆
nzn + M̃⋆

nB̃
⋆
nzn

)
,

(18)
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for n = 1, . . . , nT − 1, with the matrices in the
expression to be determined.

Here, we propose to approximate the unknown
matrices in the formulation by linear interpola-
tion on the manifold of GENERIC terms. Let N
denote the set of indices of the neighboring para-
metric solutions in D, enclosing the value of µ⋆

in the parametric space. Recall that the port-
metriplectic terms corresponding to time evolu-
tion for µi, i ∈ N , are precomputed and stored in
the identification phase. Then, at time step n, we
approximate

L⋆n ≃
∑
i∈N

wiL
(i)
n , (19)

for some weights wi, i ∈ N . The approximation
for all unknown matrices in (18) in terms of pre-
computed matrices for neighboring solutions is
analogous.

The weights wi are here computed from a lin-
ear interpolation in the parametric space of µ,
with wi ≥ 0 for all i ∈ N and

∑
i∈N wi = 1.

That is, the regression is performed globally for
all parameters.

5 Numerical results

In what follows, we show the performance of the
methodology proposed in Section 4 in three dif-
ferent examples involving different physics. Recall
that we distinguish two phases: identification
and interpolation. In the identification phase we
approximate the discrete port-metriplectic struc-
ture (12) for a given dataset. In the interpolation
phase, we use the learned numerical integrator
to predict the evolution of the system in unseen
scenarios.

5.1 Damped harmonic oscillator

We consider a one-dimensional harmonic oscillator
in the presence of friction [45]. The system can be
interpreted as an open system, in which a perfect
harmonic oscillator (bulk) is damped because of
the action of an external force (port).

We take the independent state variables z =
(q, p, S), with q the position of the particle, p its
momentum and S the entropy of a homogeneous
medium causing the friction of the particle. The

motion is described by

dq

dt
=

1

m
p,

dp

dt
= −kq − γp,

dS

dt
=

γ

mT
p2,

(20)

where m is the mass of the particle, T is the tem-
perature, k is the spring constant and γ is the
damping coefficient. The initial condition is of the
form (q0, 0, 0). We set m = 1 kg, T = 25 K and
k = 2250 N/m.

The evolution of the state variables can be
modelled by a GENERIC structure (4), with
known Poisson and dissipative matrices [45]. In
particular,

L =

 0 1 0
−1 0 0
0 0 0

 ,

M = yy⊤ with y =

√
γ

mT

 0
mT
−p

 .

(21)

Here, we aim to model the system by the port-
metriplectic formulation (9), through its dis-
cretized version (12). The Poisson and dissipative
matrices from both the bulk and port contribu-
tions are predefined as

L = L̃ =

 0 1 0
−1 0 0
0 0 0

 , M = M̃ =

0 0 0
0 1 1
0 1 1

 , (22)

where we take the Poisson matrix of the
GENERIC formulation, and for the dissipative
matrix, we only indicate the zero coefficients and
let the gradient matrices B and B̃ acquire the
constants.

We account for two different datasets, obtained
by integrating the equations for (i) 10 different
values of the damping coefficient γ, uniformly dis-
tributed in [0.2, 2] Ns/m, and fixed initial position
q0 = −0.075 m, and (ii) 11 different values of the
initial position q0 ∈ [−0.15,−0.075] m and fixed
γ = 1 Ns/m. The snapshots in the datasets are
depicted in Figure 1.

The time discretization is uniform in the inter-
val [0, 10] s, with time increment ∆t = 10−3 s.
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Fig. 1 Damped harmonic oscillator. Evolution of the position q for the snapshots in the datasets with (i) damping coefficient
γ ∈ [0.2, 2] Ns/m, and (ii) initial position q0 ∈ [−0.15,−0.075] m.

The evolution of the corresponding closed system
(undamped harmonic oscillator) is also integrated
for all cases, with γ = 0. The terms in the
port-metriplectic formulation are then obtained
by following the staggered approach described in
Section 4.1.

To test the learning algorithm, we interpolate
the intermediate elements of the datasets using
the GENERIC terms arising from two neighbor-
ing snapshots. Since the parametric discretizations
are uniform, we have w1 = w2 = 0.5 in the lin-
ear combinations in (19). The obtained errors are
summarized in Figure 2. For the first dataset, with
parametrized damping coefficient, we obtain rel-
ative L2 errors around 10−2. For the second one,
with parametrized initial position, errors are of the
order of 10−3.

5.2 Vertical sloshing tank

In this example, we use experimental data from
the SLOWD database [46, 47]. The experimental
setup is a liquid-filled tank, which is attached to a
spring-damper system. Figure 3 shows an scheme
of the setting. This experiment was thought to
characterize the effects of the fuel sloshing in air-
plane tanks. This fuel acts as a dampener for the
wing vibration.

The structure is deflected for the tank to start
the motion from an initial position q0. Then, the
tank is released and starts oscillating in the verti-
cal direction. The liquid that fills the tank acts as
an external force that interacts with the dynamics.

The available data contains measurements of
the vertical position and acceleration of the tank
and the load cell force for several configurations.
As a post-process, we are able to obtain additional
variables such as the momentum, the entropy,
and the sloshing force. For the specifications on
the setup and the measuring system we refer to
Mart́ınez-Carrascal and González-Gutiérrez [46].

The chosen state variables to describe the sys-
tem are z = (q, p, S), with q the vertical position
of the tank, p its momentum and S the entropy.

We test the proposed learning methodology for
two different datasets. In the first set, we account
for 9 different filling levels of liquid, from 10%
to 90% of the capacity of the tank, starting the
motion from the position q0 = −0.075 m. The time
interval is [0, 6.5] s and it is discretized with time
increment ∆t = 9.8 · 10−4 s.

In the second set, we consider the observations
for 10 different initial positions q0 distributed in
the interval [−0.055,−0.011] m, and a fixed filling
level of 50%. The time interval is [0, 4.5] s and
it is discretized with time increment ∆t = 9.4 ·
10−4 s. The position evolution for the experiments
included in the datasets are shown in Figure 4.

For all considered configurations, measure-
ments for the equivalent experiments with the dry
tank are also available. This enables the use of the
staggered scheme in the identification phase of our
algorithm. Due to the oscillating behavior of the
observations, the Poisson and dissipative matrices
in the port-metriplectic formulation are predefined
as in Eq. (22).
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Fig. 2 Damped harmonic oscillator. Boxplots for the relative L2 errors in the interpolation of all the snapshots in the
two datasets with (i) parametrized damping coefficient γ, and (ii) parametrized initial position q0. The state variables are
position q, momentum p and entropy S.

b1 k1

Sloshing fluid q

b2 k2

Fig. 3 Vertical sloshing tank. Experimental setup for the
data in the SLOWD database [46, 47]. The setup consists
of a rigid tank, attached to the walls by two spring-damper
systems. One of them is also equipped with a load cell, not
represented for simplicity.

For previously unseen situations (filling level
or initial position as parameters), interpolation
is performed using the GENERIC constituents
coming from two neighboring snapshots. Figures
5 and 6 show the state variables position and
entropy for previously unseen situations using the
two datasets. Time integration is performed in the
whole time intervals, and is zoomed at [1.6, 1.9]
s for illustration purposes. The learned solutions
are able to capture the oscillating behavior of the
system and, as expected, are located somewhere
between the neighboring solutions. This motivates
the use of enclosing solutions as neighbors. Figure
7 summarizes the L2 relative errors for interpo-
lation of all available experiments. In both cases,

the obtained errors are slightly larger than the
errors for the synthetic damped harmonic oscilla-
tor example in Section 5.1. However, the mean of
the errors is below 10% even in the presence of
noise in experimental data.

The strategy performs robustly despite the
presence of experimental noise in the data. It is
worth mentioning that a naive approach based
on pure interpolation of the results by taking the
amount of filling of the tank as the governing
variable does not lead to any meaningful result.

5.3 Fluid-structure interaction in an
oscillating tank

In this case we analyze data coming from a fluid-
structure interaction problem taken from [48]. In
it, see Fig. 8, a cylindrical tank is attached to
a cantilevered beam. Both the solid and fluid
dynamics in this experiment share similar char-
acteristics, leading to strong couplings. In the
experimental setting, two piezoelectric actuators
are attached to the beam, near the encastre.
These cause the beam to oscillate in torsion. The
motion of the set is captured with the help of two
accelerometers at the free edge of the beam.

The movement of the tank in the horizontal
direction causes the beam to bend along its weak
axis of inertia, while the weight of the tank and
the liquid make it bend in the vertical direction.
Additionally, oscillations of the tank cause torsion
in the beam. On top of all these physical phenom-
ena (two bending directions, torsion and sloshing;
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-0.05
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10%

20%
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40%
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0 1 2 3 4 5 6
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Fig. 4 Vertical sloshing tank. Evolution of the position q for the snapshots in the datasets with parametrized (i) liquid
filling level, and (ii) initial position q0.

1.6 1.7 1.8 1.9
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

1.6 1.7 1.8 1.9
0.085

0.09

0.095

Fig. 5 Vertical sloshing tank. (i) Parametrized liquid filling level. Learned solution for filling level of 70%, interpolating
the structures of neighboring snapshots with 60% and 80% of liquid. Plot of the position q and entropy S at time interval
[1.6, 1.9] s.
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-0.005

0

0.005

0.01

1.6 1.7 1.8 1.9
0.01

0.015

0.02

0.025

0.03

Fig. 6 Vertical sloshing tank. (ii) Parametrized initial position. Learned solution for initial position of −0.0334 m, inter-
polating the structures of neighboring snapshots with initial positions −0.0281 m and 0.0384 m. Plot of the position q and
entropy S at time interval [1.6, 1.9] s.

Fig. 7 Vertical sloshing tank. Boxplots for the relative L2
errors in the interpolation of all the snapshots in the two
datasets with parametrized (i) liquid filling level, and (ii)
initial position. The state variables are position q, momen-
tum p and entropy S.

the tank is assumed to be perfectly rigid), sloshing
of the fluid dampers the dynamics of the tank.

The tank is 0.5 m wide, with an internal
cavity of 0.470 m and an internal diameter of
0.105 m. It is made of a material with mass
density 1180 kg/m3 and filled with water. The
beam is assumed to be made of aluminum, with
Young’s modulus 75 GPa, Poisson’s ratio 0.33
and mass density 2970 kg/m3. Its dimensions are
1.36× 0.15× 0.005 m3.

To obtain synthetic data, the same method
developed in [48] is employed. It uses a port-
Hamiltonian approach and an appropriate dis-
cretization for each physics. The interested reader
is referred to this article for more details about the
particular implementation. In essence, the beam is
assumed to follow a classic Euler-Bernoulli-Navier
model for the bending phenomenon, the fluid is
assumed to follow the shallow-water equations
and, finally, torsion is assumed to be of Saint
Venant type. The tank moves as a rigid body.
Numerical results obtained under these assump-
tions are assumed to be the ground truth for our
method.

Our vector of (synthetic) measurements is
composed by z = [xB ,xT ,xF ,xRB ]

⊤, where

• xB ∈ R2NB represents the degrees of freedom
related to beam bending,

• xT ∈ R2NT represents the degrees of freedom
related to beam torsion,

• xF ∈ R2NF represents the degrees of freedom
on the fluid’s free surface and
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Fig. 8 Oscillating tank. Sketch of the experimental setup.
The actuation on the beam causes the tank to rotate
(depicted in dashed line) but also to oscillate in the hori-
zontal direction. Its weight also causes the beam to bend in
the vertical direction (not represented for simplicity). The
movement in the tank causes the fluid to slosh.

• xRB ∈ R6 represents the degrees of freedom
of the rigid-body motion of the tank (three
displacements, three rotations of the center of
mass).

In the simulations taken as ground truth, NB =
NT = NF = 10.

The system is analyzed for different degrees of
filling of the tank, following a staggered approach,
as introduced in Section 4.2. Two different data
sets are considered, one with 40, 50, . . . , 80%
of filling, and a more detailed one, with 40, 45,
50, . . . , 80% of filling. Following the staggered
approach, we first determine the time evolution
of each sub-system by identifying the elements of
their GENERIC description,

ż = L(z)
∂E

∂z
+M(z)

∂S

∂z
, (23)

and then we identify the contribution of each port,
F ,

ż = L(z)
∂E

∂z
+M(z)

∂S

∂z
+ F . (24)

The error in the reconstruction of a previously
unseen degree of filling is evaluated as the ℓ2-norm
error in the fluid surface. Thus, assuming that
there are nnodes discretizing the fluid surface, this

error is computed as

e =
1

nsteps

∑
nsteps

(
1

nnodes

∑
nnodes

∥zGT − zapp∥2
∥zGT∥2

)
,

(25)
where zGT refers to the height at a given nodal
position in the ground truth and zapp its approx-
imated counterpart, provided by our method.

With these settings, we obtained the errors
reported in Table 1 for different filling levels. The
reader can notice the excellent degree of accuracy
obtained for both datasets. In practice, it seems
that the refined dataset does not always provide a
substantial increase in accuracy.

Filling Detailed dataset Coarse dataset

42% 0.24122 0% 0.248572%
47% 0.278169 % 0.270149%
53% 0.339042 % 0.380250%
58% 0.370434 % 0.412029%
61% 0.445868 % 0.466474%
63% 0.351901 % 0.392356%
67% 0.424947 % 0.419198%
72% 0.560914 % 0.494248%

Table 1 Oscillating tank. Errors in L2 norm
in the approximation of the liquid free surface
by employing the detailed and coarse datasets,
respectively.

In order to ascertain if a more elaborated
interpolation scheme could provide with more
accurate results, we have also tested a quadratic
scheme, that employs three neighboring snap-
shots to determine the GENERIC structure of the
problem. As an example, the 61 % filling pro-
vides 0.487036 % error for the coarse dataset and
0.411062 % for the detailed dataset.

The evolution in time of the error is depicted
in Fig. 9 for the 47 % of filling example.

Finally, for a qualitative evaluation of the
error, some snapshots are provided in Fig. 10.

6 Conclusions

We developed a method able to provide with
accurate estimates of the dynamics of coupled,
multi-physics and parametric systems from data.
The method is based first on the regression from
experimental or synthetic data of the terms of an
assumed port-metriplectic structure for the prob-
lem at hand. This ensures that the learnt evolution
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Fig. 9 Oscillating tank. Evolution in time of the L2-norm
error of the position of the free surface of the fluid.

of the system will satisfy by construction the first
and second principles of thermodynamics, even for
dissipative, open systems. Then, in a second step,
for previously unseen situations, the method inter-
polates each term of the metriplectic description
from neighboring parametric data.

Unlike previous approaches, the just developed
method does not employ neural networks, that
have demonstrated to be a powerful tool, but
classical constrained regression techniques. It nev-
ertheless offers competitive results. The method
is robust for synthetic as well as experimental
(noisy) datasets, and is able to provide with com-
plete rollouts of the evolution of the different
systems tested until stop by dissipation.

It remains as a topic for future analysis wether
the employ of existing neural network architec-
tures could offer competitive advantages over the
just presented constrained regression approach. In
any case, the assumed port-metriplectic structure
of the evolution of the different considered sys-
tems has shown to be a powerful inductive bias
for learning complex, multi-physics systems from
data.
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